4.7 Article

Tracking and quantifying volcanic SO2 with IASI, the September 2007 eruption at Jebel at Tair

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 8, 期 24, 页码 7723-7734

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-8-7723-2008

关键词

-

资金

  1. Research Associate
  2. F. R. S.-FNRS [4511.08]
  3. Belgian State Federal Office for Scientific, Technical and Cultural Affairs
  4. European Space Agency [C90- 219]

向作者/读者索取更多资源

In this paper we demonstrate the potential of the infrared Fourier transform spectrometer IASI in analysing volcanic eruptions, using the September 2007 eruption at Jebel at Tair as an illustrative example. Detailed radiative transfer calculations are presented, simulating IASI-like transmittance spectra for a variety of volcanic plumes. We analyse the sensitivity of IASI to SO2 at different altitudes and demonstrate that IASI is in principle capable of sensing SO2 down to the surface. Using the brightness temperature difference of well chosen SO2 channels as a filter, we are able to track the plume of the Jebel at Tair eruption for 12 days, on a par with state of the art UV sounders. A method is presented for quickly estimating the altitude of a volcanic plume based on the relative intensities of the SO2 absorption lines. Despite recent advances, it is still very challenging to retrieve vertical profiles of SO2 from nadir viewing satellites. Currently the most accurate profiles in nadir are retrieved using backtracking of the plume with atmospheric transport models. Via full inverse retrievals using the optimal estimation method, we show the possibility of extracting medium coarse vertical profiles from IASI data. The retrieval allows us to present an evolution of the total mass of SO2 in the plume for the Jebel at Tair eruption. An analytical relation is derived between brightness temperature differences and concentrations, which fits the experimental data very well. The spectral range of IASI also allows retrieval of volcanic aerosols. In the initial plume of the Jebel at Tair eruption, volcanic aerosols were found in the form of ice particles, for which we derived particle sizes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据