4.4 Article

LiDAR-Assisted Identification of an Active Fault near Truckee, California

期刊

出版社

SEISMOLOGICAL SOC AMER
DOI: 10.1785/0120090261

关键词

-

向作者/读者索取更多资源

We use high-resolution (1.5-2.4 points/m(2)) bare-earth airborne Light Detection and Ranging (LiDAR) imagery to identify, map, constrain, and visualize fault-related geomorphology in densely vegetated terrain surrounding Martis Creek Dam near Truckee, California. Bare-earth LiDAR imagery reveals a previously unrecognized and apparently youthful right-lateral strike-slip fault that exhibits laterally continuous tectonic geomorphic features over a 35-km-long zone. If these interpretations are correct, the fault, herein named the Polaris fault, may represent a significant seismic hazard to the greater Truckee-Lake Tahoe and Reno-Carson City regions. Three-dimensional modeling of an offset late Quaternary terrace riser indicates a minimum tectonic slip rate of 0.4 +/- 0.1 mm/yr. Mapped fault patterns are fairly typical of regional patterns elsewhere in the northern Walker Lane and are in strong coherence with moderate magnitude historical seismicity of the immediate area, as well as the current regional stress regime. Based on a range of surface-rupture lengths and depths to the base of the seismogenic zone, we estimate a maximum earthquake magnitude (M) for the Polaris fault to be between 6.4 and 6.9.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据