4.4 Article

An Empirically Calibrated Framework for Including the Effects of Near-Fault Directivity in Probabilistic Seismic Hazard Analysis

期刊

出版社

SEISMOLOGICAL SOC AMER
DOI: 10.1785/0120100090

关键词

-

资金

  1. National Science Foundation [CMMI 0726684]

向作者/读者索取更多资源

Forward directivity effects are known to cause pulselike ground motions at near-fault sites. We propose a comprehensive framework to incorporate the effects of near-fault pulselike ground motions in probabilistic seismic hazard analysis (PSHA) computations. Also proposed is a new method to classify ground motions as pulselike or non-pulselike by rotating the ground motion and identifying pulses in all orientations. We have used this method to identify 179 recordings in the Next Generation Attenuation (NGA) database (Chiou et al., 2008), where a pulselike ground motion is observed in at least one orientation. Information from these 179 recordings is used to fit several data-constrained models for predicting the probability of a pulselike ground motion occurring at a site, the orientations in which they are expected relative to the strike of the fault, the period of the pulselike feature, and the response spectrum amplification due to the presence of a pulselike feature in the ground motion. An algorithm describing how to use these new models in a modified PSHA computation is provided. The proposed framework is modular, which will allow for modification of one or more models as more knowledge is obtained in the future without changing other models or the overall framework. Finally, the new framework is compared with existing methods to account for similar effects in PSHA computation. Example applications are included to illustrate the use of the proposed framework, and implications for selection of ground motions for analysis of structures at near-fault sites are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据