4.5 Article

Expression profiling of hepatic genes associated with lipid metabolism in nephrotic rats

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
卷 295, 期 3, 页码 F662-F671

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00046.2008

关键词

microarrays; nephrotic syndrome; lipid

资金

  1. National Science Foundation of China [30670766/30530340/30771030]
  2. National Institute of Diabetes and Digestive and Kidney Diseases [RO1-DK-065074-04, PO1-DK-38226]
  3. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [R01DK065074, P01DK038226] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Hyperlipidemia is one of the major features of nephrotic syndrome (NS). Although many factors have been implicated in the pathogenesis of NS-related dyslipidemia, the underlying mechanisms remain largely uncharacterized. The present study was designed to examine the gene profile associated with lipid metabolism in the livers of nephrotic rats. NS was created in male Sprague-Dawley rats (n = 6) receiving sequential intraperitoneal injections of puromycin aminonucleoside. Analysis by Affymetrix assay, quantitative RT-PCR, and Northern and Western blotting revealed 21 genes associated with cholesterol and fatty acid metabolism. Eight genes involved in cholesterol metabolism, Apo A-I, Acly, Acat, Mpd, Fdps, Ss, Lss, and Nsdhl, were significantly upregulated under NS. Four genes involved in fatty acid biosynthesis, Acc, FAS, ELOVL 2, and ELOVL 6, and three critical for triglyceride biosynthesis, Gpam, Agpat 3, and Dgat 1, were significantly upregulated, whereas two genes involved in fatty acid oxidation, Dci and MCAD, were downregulated. Expression of several genes in sterol-regulatory element-binding protein (SREBP)-1 activation was also aberrantly altered in nephrotic livers. The expression and transcriptional activity of SREBP-1 but not SREBP-2 were increased in nephrotic rats as assessed by real-time PCR, immunoblotting, and gel shift assays. The upregulation of hepatic genes involved in cholesterol biosynthesis may play an important role in the pathogenesis of hypercholesterolemia, whereas upregulation of genes participating in hepatic fatty acid and triglyceride biosynthesis and down-regulation of genes involved in hepatic fatty acid oxidation may contribute to hypertriglyceridemia in nephrotic rats. Activation of SREBP-1 transcription factor may represent an underlying molecular mechanism of hyperlipidemia in NS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据