4.7 Article

Nitric oxide regulates vascular calcification by interfering with TGF-beta signalling

期刊

CARDIOVASCULAR RESEARCH
卷 77, 期 1, 页码 221-230

出版社

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvm049

关键词

atherosclerosis; vascular calcification; vascular ageing; diabetes mellitus

向作者/读者索取更多资源

Aims Vascular calcification often occurs with advancing age, atherosclerosis, and metabolic disorders such as diabetes mellitus and end-stage renal disease. Vascular calcification is associated with cardiovascular events and increased mortality. Nitric oxide (NO) is crucial for maintaining vascular function, but little is known about how NO affects vascular calcification. The aim of this study was to examine the effect of NO on vascular calcification. Methods and results In this study, we examined the inhibitory effects of NO on calcification of murine vascular smooth muscle cells (VSMCs) in vitro. We measured calcium concentration, alizarin red staining, and alkaline phosphatase activity to examine the effect of NO on calcification of VSMCs and differentiation of VSMCs into osteoblastic cells. We also determined gene expression and levels of phosphorylation of Smad2/3 by RT-PCR and western blotting. NO inhibited calcification of VSMCs and differentiation of VSMCs into osteoblastic cells. An inhibitor of cyclic guanosine monophosphate (cGMP)-dependent protein kinase restored the inhibition by NO of osteoblastic differentiation and calcification of VSMCs. NO inhibited transforming growth factor-beta (TGF-beta)-induced phosphorylation of Smad2/3 and expression of TGF-beta-induced genes such as plasminogen activator inhibitor-1. In addition, NO inhibited expression of the TGF-beta receptor ALK5. Conclusion Our data show that NO prevents differentiation of VSMCs into osteoblastic cells by inhibiting TGF-beta signalling through a cGMP-dependent pathway. Our findings suggest that NO may play a beneficial role in atherogenesis in part by limiting vascular calcification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据