4.4 Article

Bioremediation of atrazine-contaminated soil by forage grasses: Transformation, uptake, and detoxification

期刊

JOURNAL OF ENVIRONMENTAL QUALITY
卷 37, 期 1, 页码 196-206

出版社

WILEY
DOI: 10.2134/jeq2006.0503

关键词

-

向作者/读者索取更多资源

A sound multi-species vegetation buffer design should incorporate the species that facilitate rapid degradation and sequestration of deposited herbicides in the buffer. A field lysimeter study with six different ground covers (bare ground, orchardgrass, call fescue, timothy, smooth bromegrass, and switchgrass) was established to assess the bioremediation capacity, of five forage species to enhance atrazine (ATR) dissipation in the environment via plant uptake and degradation and detoxification in the rhizosphere. Results suggested that the majority of the applied ATR remained in the soil and only a relatively small fraction of herbicide leached to leachates (< 15%) or was taken up by plants (< 4%). Biological degradation or chemical hydroxylation of soil ATR was enhanced by 20 to 45% in forage treatment compared with the control. Of the ATR residues remaining in soil, switchgrass degraded more than 80% to less toxic metabolites, with 47% of these residues converted to the less mobile hydroxylated metabolites 25 d after application. The strong correlation between the degradation of N-dealkylated ATR metabolites and the increased microbial biomass carbon in forage treatments suggested that enhanced biological degradation in the rhizosphere was facilitated by the forages. Hydroxylated ATR degradation products were the predominant ATR metabolites in the tissues of switchgrass and call fescue. In contrast, the N-dealkylated metabolites were the major degradation products found in the other cool-season species. The difference in metabolite patterns between the warm- and cool-season species demonstrated their contrasting detoxification mechanisms, which also related to their tolerance to ATR exposure. Based on this study, switchgrass is recommended for use in riparian buffers designed to reduce ATR toxicity and mobility due to its high tolerance and strong degradation capacity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据