4.6 Article

Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype

期刊

ENVIRONMENTAL MICROBIOLOGY
卷 10, 期 1, 页码 10-19

出版社

WILEY
DOI: 10.1111/j.1462-2920.2007.01425.x

关键词

-

向作者/读者索取更多资源

The anaerobic biodegradation of benzene, a common constituent of petroleum and one of the least reactive aromatic hydrocarbons, is insufficiently understood with respect to the involved microorganisms and their metabolism. To study these aspects, sulfate-reducing bacteria were enriched with benzene as sole organic substrate using marine sediment as inoculum. Repeated subcultivation yielded a sediment-free enrichment culture constituted of mostly oval-shaped cells and showing benzene-dependent sulfate reduction and growth under strictly anoxic conditions. Amplification and sequencing of 16S rRNA genes from progressively diluted culture samples revealed an abundant phylotype; this was closely related to a clade of Deltaproteobacteria that includes sulfate-reducing bacteria able to degrade naphthalene or other aromatic hydrocarbons. Cell hybridization with two specifically designed 16S rRNA-targeted fluorescent oligonucleotide probes showed that the retrieved phylotype accounted for more than 85% of the cells detectable via DAPI staining (general cell staining) in the enrichment culture. The result suggests that the detected dominant phylotype is the 'candidate species' responsible for the anaerobic degradation of benzene. Quantitative growth experiments revealed complete oxidation of benzene with stoichiometric coupling to the reduction of sulfate to sulfide. Suspensions of benzene-grown cells did not show metabolic activity towards phenol or toluene. This observation suggests that benzene degradation by the enriched sulfate-reducing bacteria does not proceed via anaerobic hydroxylation (mediated through dehydrogenation) to free phenol or methylation to toluene, respectively, which are formerly proposed alternative mechanisms for benzene activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据