4.7 Article

Fourier microfluidics

向作者/读者索取更多资源

We present a new experimental technique for the separation of dynamic chemical signals based on their frequency domain characteristics. Such a technique can be used to create filters that separate slow signals from fast signals from a common input flow stream. The propagation of time-varying chemical waves through networks of microfluidic channels is first examined. Mathematical models and a set of simple experiments are developed that demonstrate that short microfluidic channels behave as linear delay lines. The observed dispersive broadening and delay behavior can be explained in Fourier space in terms of corresponding phase delay, amplitude decay and characteristic transfer functions. Such delay components can be utilized to implement frequency dependent interference filters. An 8th order PDMS bandpass filter chip demonstrating these ideas was constructed. The filter chip has a central frequency of 0.17 Hz and a bandwith of 0.04 Hz at a flow rate of 4 mu L h(-1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据