4.5 Article

Activated Akt1 accelerates MMTV-c-ErbB2 mammary tumourigenesis in mice without activation of ErbB3

期刊

BREAST CANCER RESEARCH
卷 10, 期 4, 页码 -

出版社

BMC
DOI: 10.1186/bcr2132

关键词

-

类别

资金

  1. Susan G. Komen Foundation [BCTR0600727]
  2. Public Health Service [P01HD38129]
  3. Cancer Center Core [P30CA046934]
  4. US Army Breast Cancer Research Program [BC051149]
  5. NATIONAL CANCER INSTITUTE [P30CA046934] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Introduction ErbB2, a member of the epidermal growth factor receptor (EGFR) family, is overexpressed in 20% to 30% of human breast cancer cases and forms oncogenic signalling complexes when dimerised to ErbB3 or other EGFR family members. Methods We crossed mouse mammary tumour virus (MMTV)myr-Akt1 transgenic mice (which express constitutively active Akt1 in the mammary gland) with MMTV-c-ErbB2 transgenic mice to evaluate the role of Akt1 activation in ErbB2-induced mammary carcinoma using immunoblot analysis, magnetic resonance spectroscopy and histological analyses. Results Bitransgenic MMTV-c-ErbB2, MMTV-myr-Akt1 mice develop mammary tumours twice as fast as MMTV-c-ErbB2 mice. The bitransgenic tumours were less organised, had more mitotic figures and fewer apoptotic cells. However, many bitransgenic tumours displayed areas of extensive necrosis compared with tumours from MMTV-c-ErbB2 mice. The two tumour types demonstrate dramatically different expression and activation of EGFR family members, as well as different metabolic profiles. c-ErbB2 tumours demonstrate overexpression of EGFR, ErbB2, ErbB3 and ErbB4, and activation/phosphorylation of both ErbB2 and ErbB3, underscoring the importance of the entire EGFR family in ErbB2-induced tumourigenesis. Tumours from bitransgenic mice overexpress the myr-Akt1 and ErbB2 transgenes, but there was dramatically less overexpression and phosphorylation of ErbB3, diminished phosphorylation of ErbB2, decreased level of EGFR protein and undetectable ErbB4 protein. There was also an observable attenuation in a subset of tyrosine-phosphorylated secondary signalling molecules in the bitransgenic tumours compared with c-ErbB2 tumours, but Erk was activated/phosphorylated in both tumour types. Finally, the bitransgenic tumours were metabolically more active as indicated by increased glucose transporter 1 (GLUT1) expression, elevated lactate production and decreased intracellular glucose (suggesting increased glycolysis). Conclusion Expression of activated Akt1 in MMTV-c-ErbB2 mice accelerates tumourigenesis with a reduced requirement for signalling through the EGFR family, as well as a reduced requirement for a subset of downstream signaling molecules with a metabolic shift in the tumours from bitransgenic mice. The reduction in signalling downstream of ErbB2 when Akt is activated suggest a possible mechanism by which tumour cells can become resistant to ErbB2-targeted therapies, necessitating therapies that target oncogenic signalling events downstream of ErbB2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据