4.5 Article

Genes responsive to both oxidant stress and loss of estrogen receptor function identify a poor prognosis group of estrogen receptor positive primary breast cancers

期刊

BREAST CANCER RESEARCH
卷 10, 期 4, 页码 -

出版社

BMC
DOI: 10.1186/bcr2120

关键词

-

类别

资金

  1. NIH [R01-AG020521, R01-CA71468]
  2. NATIONAL CANCER INSTITUTE [R01CA071468] Funding Source: NIH RePORTER
  3. NATIONAL INSTITUTE ON AGING [R01AG020521] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Introduction Oxidative stress can modify estrogen receptor (ER) structure and function, including induction of progesterone receptor (PR), altering the biology and clinical behavior of endocrine responsive (ER-positive) breast cancer. Methods To investigate the impact of oxidative stress on estrogen/ER-regulated gene expression, RNA was extracted from ER-positive/PR-positive MCF7 breast cancer cells after 72 hours of estrogen deprivation, small-interfering RNA knockdown of ER-alpha, short-term (8 hours) exposure to various oxidant stresses (diamide, hydrogen peroxide, and menadione), or simultaneous ER-alpha knockdown and oxidant stress. RNA samples were analyzed by high-throughput expression microarray (Affymetrix), and significance analysis of microarrays was used to define gene signatures responsive to estrogen/ER regulation and oxidative stress. To explore the association of these signatures with breast cancer biology, microarray data were analyzed from 394 ER-positive primary human breast cancers pooled from three independent studies. In particular, an oxidant-sensitive estrogen/ER-responsive gene signature (OxE/ER) was correlated with breast cancer clinical parameters and disease-specific patient survival (DSS). Results From 891 estrogen/ER-regulated probes, a core set of 75 probes (62 unique genes) responsive to all three oxidants were selected (Ox-E/ER signature). Ingenuity pathway analysis of this signature highlighted networks involved in development, cancer, and cell motility, with intersecting nodes at growth factors (platelet-derived growth factor-BB, transforming growth factor-beta), a proinflammatory cytokine (tumor necrosis factor), and matrix metalloproteinase-2. Evaluation of the 394 ER-positive primary breast cancers demonstrated that Ox-E/ER index values correlated negatively with PR mRNA levels (r(p) = 0.2; P = 0.00011) and positively with tumor grade (rp = 0.2; P = 9.741 x e(-5)), and were significantly higher in ER-positive/PR-negative versus ER-positive/PR-positive breast cancers (t-test, P = 0.0008). Regardless of PR status, the Ox-E/ER index associated with reduced DSS (n = 201; univariate Cox, P = 0.078) and, using the optimized cut-point, separated ER-positive cases into two significantly different DSS groups (log rank, P = 0.0009). Conclusion An oxidant-sensitive subset of estrogen/ER-responsive breast cancer genes linked to cell growth and invasion pathways was identified and associated with loss of PR and earlier disease-specific mortality, suggesting that oxidative stress contributes to the development of an aggressive subset of primary ER-positive breast cancers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据