4.7 Article

The Ozone Water-Land Environmental Transition Study: An Innovative Strategy for Understanding Chesapeake Bay Pollution Events

期刊

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/BAMS-D-18-0025.1

关键词

-

资金

  1. 2017 NASA Science Innovation Fund
  2. NASA Tropospheric Composition Program
  3. TEMPO Student Collaboration Project (NASA Earth System Science Pathfinder Program)
  4. NASA GSFC Pandora Project
  5. NASA AERONet Project
  6. NASA [NNX15AB84G]
  7. NASA [809128, NNX15AB84G] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Coastal regions have historically represented a significant challenge for air quality investigations because of water-land boundary transition characteristics and a paucity of measurements available over water. Prior studies have identified the formation of high levels of ozone over water bodies, such as the Chesapeake Bay, that can potentially recirculate back over land to significantly impact populated areas. Earth-observing satellites and forecast models face challenges in capturing the coastal transition zone where small-scale meteorological dynamics are complex and large changes in pollutants can occur on very short spatial and temporal scales. An observation strategy is presented to synchronously measure pollutants over land and over water to provide a more complete picture of chemical gradients across coastal boundaries for both the needs of state and local environmental management and new remote sensing platforms. Intensive vertical profile information from ozone lidar systems and ozonesondes, obtained at two main sites, one over land and the other over water, are complemented by remote sensing and in situ observations of air quality from ground-based, airborne (both personned and unpersonned), and shipborne platforms. These observations, coupled with reliable chemical transport simulations, such as the National Oceanic and Atmospheric Administration (NOAA) National Air Quality Forecast Capability (NAQFC), are expected to lead to a more fully characterized and complete land-water interaction observing system that can be used to assess future geostationary air quality instruments, such as the National Aeronautics and Space Administration (NASA) Tropospheric Emissions: Monitoring of Pollution (TEMPO), and current low-Earth-orbiting satellites, such as the European Space Agency's Sentinel-5 Precursor (S5-P) with its Tropospheric Monitoring Instrument (TROPOMI).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据