4.7 Review

METHODS AND RESOURCES FOR CLIMATE IMPACTS RESEARCH Achieving Synergy

期刊

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/2008BAMS2403.1

关键词

-

资金

  1. EU FP6
  2. NERC
  3. JAMSTEC
  4. Foreign and Commonwealth Office Global Opportunities Fund
  5. Joint DEFRA [GA01101, CBC/2B/0417-Annex C5]
  6. ESRC [ES/G021694/1] Funding Source: UKRI
  7. Economic and Social Research Council [ES/G021694/1] Funding Source: researchfish
  8. Natural Environment Research Council [ncas10009, NER/O/S/2002/00975, NE/B505538/1] Funding Source: researchfish

向作者/读者索取更多资源

The prediction of climate variability and change requires the use of a range of simulation models. Multiple climate model simulations are needed to sample the inherent uncertainties in seasonal to centennial prediction. Because climate models are computationally expensive, there is a tradeoff between complexity, spatial resolution, simulation length, and ensemble size. The methods used to assess climate impacts are examined in the context of this trade-off. An emphasis on complexity allows simulation of coupled mechanisms, such as the carbon cycle and feedbacks between agricultural land management and climate. In addition to improving skill, greater spatial resolution increases relevance to regional planning. Greater ensemble size improves the sampling of probabilities. Research from major international projects is used to show the importance of synergistic research efforts. The primary climate impact examined is crop yield, although many of the issues discussed are relevant to hydrology and health modeling. Methods used to bridge the scale gap between climate and crop models are reviewed. Recent advances include large-area crop modeling, quantification of uncertainty in crop yield, and fully integrated crop-climate modeling. The implications of trends in computer power, including supercomputers, are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据