4.4 Article

A Modeling and Simulation Study of the Role of Suspended Microbial Populations in Nitrification in a Biofilm Reactor

期刊

BULLETIN OF MATHEMATICAL BIOLOGY
卷 76, 期 1, 页码 27-58

出版社

SPRINGER
DOI: 10.1007/s11538-013-9898-2

关键词

Biofilm; Mathematical model; Nitrification; Suspended biomass

资金

  1. Centre for Mathematical Sciences
  2. NSERC of Canada

向作者/读者索取更多资源

Many biological wastewater treatment processes are based on bacterial biofilms, i.e. layered aggregates of microbial populations deposited on surfaces. Detachment and (re-)attachment leads to an exchange of biomass between the biofilm and the surrounding aqueous phase. Traditionally, mathematical models of biofilm processes do not take the contribution of the suspended, non-attached bacteria into account, implicitly assuming that these are negligible due to the relatively small amount of suspended biomass compared to biofilm biomass. In this paper, we present a model for a nitrifying biofilm reactor that explicitly includes both types of biomass. The model is derived by coupling a reactor mass balance for suspended populations and substrates with a full one-dimensional Wanner-Gujer type biofilm model. The complexity of this model, both with respect to mathematical structure and number of parameters, prevents a rigorous analysis of its dynamics, wherefore we study the model numerically. Our investigations show that suspended biomass needs to be considered explicitly in the model if the interests of the study are the details of the nitrification process and its intermediate steps and compounds. However, suspended biomass may be neglected if the primary interests are the overall reactor performance criteria, such as removal rates. Furthermore, it can be expected that changes in the biofilm area, attachment, detachment, and dilution rates are more likely to affect the variables primarily associated with the second step of nitrification, while the variables associated with the first step tend to be more robust.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据