4.4 Article

Stochastic models for phototaxis

期刊

BULLETIN OF MATHEMATICAL BIOLOGY
卷 70, 期 6, 页码 1684-1706

出版社

SPRINGER
DOI: 10.1007/s11538-008-9314-5

关键词

phototaxis; cellular automaton; interacting particles systems; bacteria motion

向作者/读者索取更多资源

This work studies two mathematical models for describing the motion of phototactic bacteria, i.e., bacteria that move toward light. Based on experimental observations, we conjecture that the motion of the colony toward light depends on certain group dynamics. These group dynamics are hypothesized to be coordinated through an individual property of each bacterium, which we refer to as excitation. The excitation of each individual bacterium is assumed to change based on the excitation of the neighboring bacteria. Under these assumptions, we propose a (discrete) cellular automaton model and derive an analogous stochastic model for describing the evolution in time of the location of bacteria, the excitation of individual bacteria, and a surface memory effect. We provide simulation results and discuss in detail the role of the various model parameters in controlling the emerging dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据