4.2 Article

Effect of aligned carbon nanotubes on electrical conductivity behaviour in polycarbonate matrix

期刊

BULLETIN OF MATERIALS SCIENCE
卷 35, 期 3, 页码 305-311

出版社

INDIAN ACAD SCIENCES
DOI: 10.1007/s12034-012-0299-1

关键词

Carbon nanotube; nanocomposite; electrical effect; magnetic effect

向作者/读者索取更多资源

This article reports effects of alignment of embedded carbon nanotubes in a polycarbonate polymer matrix under magnetic, direct and alternating current electric fields on the electrical properties of the resulting nanocomposites. Composites consisting of different quantities of carbon nanotubes in a polycarbonate matrix have been prepared using a solution casting technique. The effects of field strength and nanotube concentration on the resulted network structure and conductivity of the composites were studied by in situ optical microscopy, transmission electron microscopy and four-point probe technique. The results showed that the composites prepared in the presence of field had better conductivity than those of as-prepared composites. It was also concluded that the application of alternating current electric field and magnetic field in this system led to the formation of relatively continuing networks while direct current electric field only prevented agglomeration of the carbon nanotubes in the polycarbonate matrix and created relatively uniform distribution of nanotubes in the matrix.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据