4.4 Article

Degradation and Mineralization of Azo Dye Reactive Blue 222 by Sequential Photo-Fenton's Oxidation Followed by Aerobic Biological Treatment Using White Rot Fungi

出版社

SPRINGER
DOI: 10.1007/s00128-012-0888-0

关键词

Photo-Fenton's oxidation process; Aerobic biological treatment; Ligninolytic enzymes; Decolorization; Mineralization; Toxicity; UV-visible; FTIR spectral analysis

资金

  1. Higher Education Commission, Pakistan

向作者/读者索取更多资源

A two stage sequential Photo-Fenton's oxidation followed by aerobic biological treatment using two white rot fungi P. ostreatus IBL-02 (PO) and P. chrysosporium IBL-03 (PC) was performed to check decolorization and to enhance mineralization of azo dye Reactive Blue 222 (RB222). In the first stage, selected dye was subjected to Photo-Fenton's oxidation with decolorization percentage a parts per thousand 90 % which was further increased to 96.88 % and 95.23 % after aerobic treatment using two white rot fungi P. ostreatus IBL-02 (PO) and P. chrysosporium IBL-03 (PC), respectively. Mineralization efficiency was accessed by measuring the water quality assurance parameters like COD, TOC, TSS and Phenolics estimation. Reduction in COD, TOC, TSS and Phenolics were found to be 95.34 %, 90.11 %, 90.84 % and 92.22 %, respectively in two stage sequential processes. The degradation products were characterized by UV-visible and FTIR spectral techniques and their toxicity was measured. The results provide evidence that both fungal strains were able to oxidize and mineralize the selected azo dye into non-toxic metabolites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据