4.2 Article

Surface Properties of Superhydrophobic Coatings for Stone Protection

期刊

JOURNAL OF NANO RESEARCH
卷 8, 期 -, 页码 23-33

出版社

TRANS TECH PUBLICATIONS LTD
DOI: 10.4028/www.scientific.net/JNanoR.8.23

关键词

superhydrophobicity; nanoparticles; siloxane; cultural heritage; monument protection

资金

  1. EU (European Social Fund)
  2. Greek State Scholarship Foundation

向作者/读者索取更多资源

Superhydrophobic films are produced by a simple and low cost method. Silica (SiO2) nanoparticles are dispersed in solutions of Rhodorsil 224, a commercial poly(alkyl siloxane) which is used for the protection of outdoor cultural heritage objects, and the suspensions are sprayed on glass surfaces. It is shown that the siloxane-nanoparticle composite films prepared from dispersions of high particle concentrations (>= 0.5% w/v) exhibit superydrophobic properties (high static contact angle and small hysteresis) which can be rationalized by the Cassie-Baxter model, according to quantitative measurements obtained by SEM images. Siloxane-nanoparticle films are then deposited (sprayed) on Opuka, a fine-grained argillite which was used for the restoration of the castle of Prague. It is shown that the treated stone surfaces exhibit superydrophobic properties, similar to the treated glass surfaces. The efficacy of the superhydrophobic films to protect Opuka is evaluated by performing water contact angle, water capillary absorption, water vapor permeability and colorimetric measurements. It is shown that the use of nanoparticles in the protective coating has a positive effect on the results of the aforementioned tests, except for the colorimetric measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据