4.7 Article

Multipurpose characterization of glazing systems with silica aerogel: In-field experimental analysis of thermal-energy, lighting and acoustic performance

期刊

BUILDING AND ENVIRONMENT
卷 81, 期 -, 页码 92-102

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2014.06.014

关键词

Aerogel; Building nanomaterials; Energy efficiency in buildings; Acoustic performance; Lighting performance; Transparent insulation materials (TIMs)

向作者/读者索取更多资源

Thermal-energy, acoustic and lighting performance of innovative glazing systems with aerogel inclusion is evaluated through in-field experiments. The study is carried out by monitoring two dedicated prototype buildings located in central Italy, and the consistency of results with in-lab analyses is investigated. Analyses showed that aerogel can decrease energy consumption for heating by up to 50% in winter, and its capability to keep the thermal zone warmer even several days after that the heating system is switched off. Acoustic analyses confirmed in-lab measurements, showing aerogel capability to increase the facade acoustic insulation index by 3 dB. Lighting analyses showed aerogel effect to lower the daily average illuminance level by about 10% during sunny days. In cloudy weather conditions, with low level of solar radiation and indoor illuminance, the effect was relatively higher. In those cases when windows include shading elements such as protruding roof or deep window pad, aerogel effect was not clearly identified through continuous monitoring. The results of this integrated in-field experimental campaign showed that aerogel filled glazing cameras represent effective and innovative solutions for energy saving in winter, useful for improving acoustic facade performance with limited penalties in terms of daylighting. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据