4.7 Article

Investigation of indoor air pollutant dispersion and cross-contamination around a typical high-rise residential building: Wind tunnel tests

期刊

BUILDING AND ENVIRONMENT
卷 45, 期 8, 页码 1769-1778

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2010.02.003

关键词

High-rise building; Wind tunnel experiment; Air cross-contamination; Hong Kong

资金

  1. Dean's Research funding FCLU, PolyU

向作者/读者索取更多资源

The dispersion of air pollutant in complex building environment has become of great concern as more and more people live in large and crowded cities. The present work is aimed at investigating the indoor air pollutant dispersion and possible cross-unit contamination with typical high-rise residential building design in Hong Kong. Experiments were performed in a boundary layer wind tunnel for a 1:30 scale model that represented a 10-story residential building in prototype. Tracer gas, simulating exhausted room air, was continuously released from three different floor levels, and its concentrations on the adjacent and opposite envelope surfaces were measured using fast flame ionization detectors, while the pressure distributions along building facade were also measured and examined under a typical incoming wind profile. By analyzing the pressure and concentration distribution, the risk of air cross-contamination was evaluated under two wind directions. The experiment results illustrated that, in the so-called re-entrance spaces, the pollutant can spread in both vertical directions, not only in the upward direction that was found under buoyancy effect, but also in the downward direction. Furthermore, dispersion can also occur in the horizontal direction, indicating a potential risk of cross-contamination in the horizontal adjacent flats could not be overlooked as well. The study on this physical process is directly useful for the purpose of prevention and control of infectious diseases outbreak in the residential environment. In the long run, the wind tunnel test data will serve to develop computational tools to assist natural ventilation design for high-rise buildings. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据