4.7 Article

Computational analysis of reduced-mixing personal ventilation jets

期刊

BUILDING AND ENVIRONMENT
卷 44, 期 8, 页码 1559-1567

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2008.11.005

关键词

Air quality; Ventilation; Personalized ventilation

资金

  1. United States Environmental Protection Agency [CR-83269001-0]

向作者/读者索取更多资源

In this paper we develop a detailed computational fluid dynamics (CFD) model of a personal ventilation (PV) setup comprising a PV nozzle, seated thermal manikin and floor diffuser, then use experimental velocity and tracer gas concentration data for the same setup to validate the CFD model. Specifically, we compare CFD results with the experimental results obtained with both a conventional round nozzle and a novel low-mixing co-flow nozzle directing a PV fresh air jet toward the breathing zone (BZ) of a seated thermal manikin in a thermally controlled chamber ventilated also by a floor diffuser behind the manikin. The CFD model shows excellent agreement with the experimental data. We then exercise the CFD model to study the effect of nozzle exit boundary conditions such as turbulence intensity and length scale, flow rate and temperature, and manikin temperature on the air quality in the BZ of the heated manikin. It is shown that the air quality of the novel PV system is sensitive to the nozzle exit turbulence intensity and flow rate, and insensitive to jet temperature within the 20-26 degrees C range, and to body temperature within a clo range of 0-1.A companion paper presents in detail the experimental set up and results used to validate the CFD model discussed in this paper. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据