4.7 Article

Effect of age and COX-2-derived prostanoids on the progression of adult vascular dysfunction in the offspring of diabetic rats

期刊

BRITISH JOURNAL OF PHARMACOLOGY
卷 166, 期 7, 页码 2198-2208

出版社

WILEY
DOI: 10.1111/j.1476-5381.2012.01945.x

关键词

diabetes; hypertension; fetal programming; endothelial dysfunction; cyclooxygenase; prostanoids; insulin resistance

资金

  1. Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE)
  2. PIBIC/UFPE
  3. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico

向作者/读者索取更多资源

BACKGROUND AND PURPOSE The present study was designed to determine how diabetes in pregnancy affects vascular function in their offspring, the influence of age and whether COX activation is involved in this effect. EXPERIMENTAL APPROACH Relaxation responses to ACh were analysed in mesenteric resistance arteries from the offspring of control rats (O-CR) and those of diabetic rats (O-DR) at 3, 6 and 12 months of age. TxB2, PGE2 and PGF2a release were determined by enzyme immunoassay. COX-1 and COX-2 expression were measured by Western blot analysis. KEY RESULTS O-DR developed hypertension from 6 months of age compared with O-CR. In O-DR, relaxation responses to ACh were impaired in all ages studied and were restored by COX-2 inhibition. TP receptor blockade (SQ29548) restored ACh relaxation in arteries from 3-month-old O-DR while TP and EP receptor blockade (SQ29548 + AH6809) was required to restore it in 6-month-old O-DR. In 12-month-old O-DR, ACh relaxation was restored when TP, EP and FP receptors were blocked (SQ29548 + AH6809 + AL8810). ACh-stimulated TxB2 was higher in all O-DR. ACh-stimulated PGE2 release was increased in arteries from 6- and 12-month-old O-DR, whereas PGF2a was increased only in 12-month-old O-DR. COX-2, but not COX-1, expression was higher in O-DR than O-CR. CONCLUSIONS AND IMPLICATIONS The results indicate an age-dependent up-regulation of COX-2 coupled to an enhanced formation of vasoconstrictor prostanoids in resistance arteries from O-DR. This effect plays a key role in the pathogenesis of endothelial dysfunction, which in turn could contribute to the progression of vascular dysfunction in these rats.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据