4.7 Article

A novel μ-conopeptide, CnIIIC, exerts potent and preferential inhibition of NaV1.2/1.4 channels and blocks neuronal nicotinic acetylcholine receptors

期刊

BRITISH JOURNAL OF PHARMACOLOGY
卷 166, 期 5, 页码 1654-1668

出版社

WILEY
DOI: 10.1111/j.1476-5381.2012.01837.x

关键词

cone snail venom; mu-conotoxin; voltage-gated sodium channel; nicotinic acetylcholine receptor; myorelaxant; twitch tension; NMR structure

资金

  1. European Commission
  2. 6th Framework Program (LIFESCIHEALTH-6 Intergrated Project LSHB-CT-2007 [037592]

向作者/读者索取更多资源

BACKGROUND AND PURPOSE The mu-conopeptide family is defined by its ability to block voltage-gated sodium channels (VGSCs), a property that can be used for the development of myorelaxants and analgesics. We characterized the pharmacology of a new mu-conopeptide (mu-CnIIIC) on a range of preparations and molecular targets to assess its potential as a myorelaxant. EXPERIMENTAL APPROACH mu-CnIIIC was sequenced, synthesized and characterized by its direct block of elicited twitch tension in mouse skeletal muscle and action potentials in mouse sciatic and pike olfactory nerves. mu-CnIIIC was also studied on HEK-293 cells expressing various rodent VGSCs and also on voltage-gated potassium channels and nicotinic acetylcholine receptors (nAChRs) to assess cross-interactions. Nuclear magnetic resonance (NMR) experiments were carried out for structural data. KEY RESULTS Synthetic mu-CnIIIC decreased twitch tension in mouse hemidiaphragms (IC50= 150 nM), and displayed a higher blocking effect in mouse extensor digitorum longus muscles (IC = 46 nM), compared with mu-SIIIA, mu-SmIIIA and mu-PIIIA. mu-CnIIIC blocked NaV1.4 (IC50= 1.3 nM) and NaV1.2 channels in a long-lasting manner. Cardiac NaV1.5 and DRG-specific NaV1.8 channels were not blocked at 1 mu M. mu-CnIIIC also blocked the a3 beta 2 nAChR subtype (IC50= 450 nM) and, to a lesser extent, on the a7 and a4 beta 2 subtypes. Structure determination of mu-CnIIIC revealed some similarities to a-conotoxins acting on nAChRs. CONCLUSION AND IMPLICATIONS mu-CnIIIC potently blocked VGSCs in skeletal muscle and nerve, and hence is applicable to myorelaxation. Its atypical pharmacological profile suggests some common structural features between VGSCs and nAChR channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据