4.8 Article

Enhancing cancer targeting and anticancer activity by a stimulus-sensitive multifunctional polymer-drug conjugate

期刊

JOURNAL OF CONTROLLED RELEASE
卷 212, 期 -, 页码 94-102

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2015.06.024

关键词

Drug delivery; Tumor targeting; Multifunctional; Matrix metalloproteinase 2; Cell penetrating peptide; Polymer-drug conjugate

资金

  1. Controlled Release Society (CRS)
  2. Nagai Foundation Tokyo

向作者/读者索取更多资源

Undesirable physicochemical properties, low tumor targeting, insufficient cell internalization, acquired drug resistance, and severe side effects significantly limit the applications of anticancer drugs. In this study, to improve the tumor targeting and drug efficacy of the poorlywater-soluble drug, doxorubicin (DOX), a novel drug delivery platform (PEG-ppTAT-DOX) was developed, which contained a polyethylene glycol (PEG), a matrix metalloproteinase 2 (MMP2)-sensitive peptide linker (pp), a cell penetrating peptide (TAT), and a model drug (doxorubicin). The prepared drug platform possessed several key features, including: (i) the nanoparticle formation via the self-assembly; (ii) prevention of the non-specific interaction via the PEGylation; (iii) tumor targeting via the MMP2-mediated PEG deshielding and exposure of the TAT; (iv) the TAT-mediated cell internalization; (v) the TAT-induced endosomal escape; (vi) the inhibition of P-glycoprotein mediated drug efflux; and (vii) the TAT-medicated nuclear translocation. These cooperative functions ensured the improved tumor targetability, enhanced tumor cell internalization, improved intracellular distribution, and potentiated anticancer activity. Compared to the multi-component nanocarriers, the proposed simple but multifunctional polymer-drug conjugate might have greater potential for tumor-targeted drug delivery and enhanced chemotherapy. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据