4.7 Article

The effects of CYP2D6 and CYP3A activities on the pharmacokinetics of immediate release oxycodone

期刊

BRITISH JOURNAL OF PHARMACOLOGY
卷 160, 期 4, 页码 907-918

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1476-5381.2010.00673.x

关键词

oxycodone; oxymorphone; pharmacokinetics; phenotypes; CYP2D6; CYP3A; drug-drug interactions

向作者/读者索取更多资源

Background and purpose: There is high interindividual variability in the activity of drug-metabolizing enzymes catalysing the oxidation of oxycodone [cytochrome P450 (CYP) 2D6 and 3A], due to genetic polymorphisms and/or drug-drug interactions. The effects of CYP2D6 and/or CYP3A activity modulation on the pharmacokinetics of oxycodone remains poorly explored. Experimental approach: A randomized crossover double-blind placebo-controlled study was performed with 10 healthy volunteers genotyped for CYP2D6 [six extensive (EM), two deficient (PM/IM) and two ultrarapid metabolizers (UM)]. The volunteers randomly received on five different occasions: oxycodone 0.2 mg center dot kg-1 and placebo; oxycodone and quinidine (CYP2D6 inhibitor); oxycodone and ketoconazole (CYP3A inhibitor); oxycodone and quinidine+ketoconazole; placebo. Blood samples for plasma concentrations of oxycodone and metabolites (oxymorphone, noroxycodone and noroxymorphone) were collected for 24 h after dosing. Phenotyping for CYP2D6 (with dextromethorphan) and CYP3A (with midazolam) were assessed at each session. Key results: CYP2D6 activity was correlated with oxymorphone and noroxymorphone AUCs and C(max) (-0.71 < Spearman correlation coefficient rho s < -0.92). Oxymorphone C(max) was 62% and 75% lower in PM than EM and UM. Noroxymorphone C(max) reduction was even more pronounced (90%). In UM, oxymorphone and noroxymorphone concentrations increased whereas noroxycodone exposure was halved. Blocking CYP2D6 (with quinidine) reduced oxymorphone and noroxymorphone C(max) by 40% and 80%, and increased noroxycodone AUC(infinity) by 70%. Blocking CYP3A4 (with ketoconazole) tripled oxymorphone AUC(infinity) and reduced noroxycodone and noroxymorphone AUCs by 80%. Shunting to CYP2D6 pathway was observed after CYP3A4 inhibition. Conclusions and implications: Drug-drug interactions via CYP2D6 and CYP3A affected oxycodone pharmacokinetics and its magnitude depended on CYP2D6 genotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据