4.7 Article

Spatio-temporal variability and principal components of the particle number size distribution in an urban atmosphere

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 9, 期 9, 页码 3163-3195

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-9-3163-2009

关键词

-

资金

  1. EU Marie Curie Reintegration Grant [510583]

向作者/读者索取更多资源

A correct description of fine (diameter <1 mu m) and ultrafine (<0.1 mu m) aerosol particles in urban areas is of interest for particle exposure assessment but also basic atmospheric research. We examined the spatio-temporal variability of atmospheric aerosol particles (size range 3-800 nm) using concurrent number size distribution measurements at a maximum of eight observation sites in and around Leipzig, a city in Central Europe. Two main experiments were conducted with different time span and number of observation sites (2 years at 3 sites; 1 month at 8 sites). A general observation was that the particle number size distribution varied in time and space in a complex fashion as a result of interaction between local and far-range sources, and the meteorological conditions. To identify statistically independent factors in the urban aerosol, different runs of principal component (PC) analysis were conducted encompassing aerosol, gas phase, and meteorological parameters from the multiple sites. Several of the resulting PCs, outstanding with respect to their temporal persistence and spatial coverage, could be associated with aerosol particle modes: a first accumulation mode (droplet mode, 300-800 nm), considered to be the result of liquid phase processes and far-range transport; a second accumulation mode (centered around diameters 90-250 nm), considered to result from primary emissions as well as aging through condensation and coagulation; an Aitken mode (30-200 nm) linked to urban traffic emissions in addition to an urban and a rural Aitken mode; a nucleation mode (5 20 nm) linked to urban traffic emissions; nucleation modes (3-20 nm) linked to photochemically induced particle formation; an aged nucleation mode (10-50 nm). Additional PCs represented only local sources at a single site, or infrequent phenomena. In summary, the analysis of size distributions of high time and size resolution yielded a surprising wealth of statistical aerosol components occurring in the urban atmosphere over one single city. A paradigm on the behaviour of sub-mu m urban aerosol particles is proposed, with recommendations how to efficiently monitor individual sub-fractions across an entire city.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据