4.7 Article

Gap filling and noise reduction of unevenly sampled data by means of the Lomb-Scargle periodogram

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 9, 期 12, 页码 4197-4206

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-9-4197-2009

关键词

-

资金

  1. Swiss Global Atmosphere Watch program (GAW-CH)

向作者/读者索取更多资源

The Lomb-Scargle periodogram is widely used for the estimation of the power spectral density of unevenly sampled data. A small extension of the algorithm of the Lomb-Scargle periodogram permits the estimation of the phases of the spectral components. The amplitude and phase information is sufficient for the construction of a complex Fourier spectrum. The inverse Fourier transform can be applied to this Fourier spectrum and provides an evenly sampled series (Scargle, 1989). We are testing the proposed reconstruction method by means of artificial time series and real observations of mesospheric ozone, having data gaps and noise. For data gap filling and noise reduction, it is necessary to modify the Fourier spectrum before the inverse Fourier transform is done. The modification can be easily performed by selection of the relevant spectral components which are above a given confidence limit or within a certain frequency range. Examples with time series of lower mesospheric ozone show that the reconstruction method can reproduce steep ozone gradients around sunrise and sunset and superposed planetary wave-like oscillations observed by a ground-based microwave radiometer at Payerne. The importance of gap filling methods for climate change studies is demonstrated by means of long-term series of temperature and water vapor pressure at the Jungfraujoch station where data gaps from another instrument have been inserted before the linear trend is calculated. The results are encouraging but the present reconstruction algorithm is far away from being reliable and robust enough for a serious application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据