4.7 Article

The CO2 inhibition of terrestrial isoprene emission significantly affects future ozone projections

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 9, 期 8, 页码 2793-2803

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-9-2793-2009

关键词

-

资金

  1. National Centre for Atmospheric Science (NCAS)
  2. European Commission
  3. Swedish Formas
  4. Swedish Research Council

向作者/读者索取更多资源

Simulations of future tropospheric composition often include substantial increases in biogenic isoprene emissions arising from the Arrhenius-like leaf emission response and warmer surface temperatures, and from enhanced vegetation productivity in response to temperature and atmospheric CO2 concentration. However, a number of recent laboratory and field data have suggested a direct inhibition of leaf isoprene production by increasing atmospheric CO2 concentration, notwithstanding isoprene being produced from precursor molecules that include some of the primary products of carbon assimilation. The cellular mechanism that underlies the decoupling of leaf photosynthesis and isoprene production still awaits a full explanation but accounting for this observation in a dynamic vegetation model that contains a semi-mechanistic treatment of isoprene emissions has been shown to change future global isoprene emission estimates notably. Here we use these estimates in conjunction with a chemistry-climate model to compare the effects of isoprene simulations without and with a direct CO2-inhibition on late 21st century O-3 and OH levels. The impact on surface O-3 was significant. Including the CO2-inhibition of isoprene resulted in opposing responses in polluted (O-3 decreases of up to 10 ppbv) vs. less polluted (O-3 increases of up to 10 ppbv) source regions, due to isoprene nitrate and peroxy acetyl nitrate (PAN) chemistry. OH concentration increased with relatively lower future isoprene emissions, decreasing methane lifetime by similar to 7 months (6.6%). Our simulations underline the large uncertainties in future chemistry and climate studies due to biogenic emission patterns and emphasize the problems of using globally averaged climate metrics (such as global radiative forcing) to quantify the atmospheric impact of reactive, heterogeneously distributed substances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据