4.7 Article

Lattice Boltzmann simulation of gas-solid adsorption processes at pore scale level

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 300, 期 -, 页码 800-813

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2015.08.014

关键词

LBM; Adsorption; Langmuir kinetics; Porous media; Pore scale

资金

  1. National Natural Science Foundation of China [51322604, 51176149]
  2. National Key Laboratory of Human Factors Engineering [HF2013-K-05]
  3. National Key Projects of Fundamental R/D of China (973 Project) [2011CB610306]

向作者/读者索取更多资源

A two-dimensional lattice Boltzmann (LB) approach was established to implement kinetic concentration boundary conditions in interfacial mass-transfer processes and to simulate the adsorption process in porous media at pore scale and mesoscopic levels. A general treatment was applied to conduct three types of concentration boundary conditions effectively and accurately. Applicability for adsorption was verified by two benchmark examples, which were representative of the interparticle mass transport and intraparticle mass transport in the adsorption system, respectively. The gas-solid adsorption process in reconstructed porous media at the pore scale level was numerically investigated. Mass-transfer processes of the adsorption reaction were simulated by executing Langmuir adsorption kinetics on surfaces of adsorbent particles. Meanwhile, the homogeneous solid diffusion model (HSDM) was used for mass transport in interior particles. The transient adsorbed amount was obtained in detail, and the impact of flow condition, porosity, and adsorbent particle size on the entire dynamic adsorption performance was investigated. The time needed to approach steady state decreased with increased fluid velocity. Transient adsorption capability and time consumption to equilibrium were nearly independent of porosity, whereas increasing pore size led to a moderating adsorption rate and more time was consumed to approach the saturation adsorption. Benefiting from the advantages of the LB method, both bulk and intraparticle mass transfer performances during adsorption can be obtained using the present pore scale approach. Thus, interparticle mass transfer and intraparticle mass transfer are the two primary segments, and intraparticle diffusion has the dominant role. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据