3.8 Article

Electro-Thermal Modeling of a Lithium-ion Battery System

期刊

SAE INTERNATIONAL JOURNAL OF ENGINES
卷 3, 期 2, 页码 306-317

出版社

SAE INT
DOI: 10.4271/2010-01-2204

关键词

-

向作者/读者索取更多资源

Lithium-Ion (Li-ion) batteries are becoming widely used high-energy sources and a replacement of the Nickel Metal Hydride batteries in electric vehicles (EV), hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Because of their light weight and high energy density, Li-ion cells can significantly reduce the weight and volume of the battery packs for EVs, HEVs and PHEVs. Some materials in the Li-ion cells have low thermal stabilities and they may become thermally unstable when their working temperature becomes higher than the upper limit of allowed operating temperature range. Thus, the cell working temperature has a significant impact on the life of Li-ion batteries. A proper control of the cell working temperature is crucial to the safety of the battery system and improving the battery life. This paper outlines an approach for the thermal analysis of Li-ion battery cells and modules. The thermal behavior was analyzed of a commercially available A123 Hymotion (TM) L5 PCM pack assembled with the A123-26650 Li-ion cylindrical cells using the electrothermal finite element model developed in this paper. The simulation results showed good agreement with measurements. This demonstrates that the electrothermal finite element model developed in this study can reasonably characterize the thermal behavior of a battery pack. Although only cylindrical cells are analyzed, the method for characterizing the thermal behavior of the Li-ion battery cells developed in this study can also be applied to battery cells with other geometries, such as prismatic and pouch cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据