4.8 Article

Characterization of Graphene-Nanoplatelets Structure via Thermogravimetry

期刊

ANALYTICAL CHEMISTRY
卷 87, 期 8, 页码 4076-4080

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.5b00228

关键词

-

向作者/读者索取更多资源

The rapid increase in graphene-based applications has been accompanied by novel top-down manufacturing methods for graphene and its derivatives (e.g., graphene nanoplatelets (GnPs)). The characterization of the bulk properties of these materials by imaging and surface techniques (e.g., electron microscopy and Raman spectroscopy) is only possible through laborious and time-consuming statistical analysis, which precludes simple and efficient quality control during GnP production. We report that thermogravimetry (TG) may be utilized, beyond its conventional applications (e.g., quantification of impurities or surfactants, or labile functional groups) to characterize bulk GnP properties. We characterize the structural parameters of GnP (i.e., defect density, mean lateral dimension, and polydispersity) by imaging and surface techniques, on one hand, and by a systematic TG, on the other. The combined data demonstrate that the combustion temperature of commercially available and laboratory-prepared GnPs is correlated with their mean lateral dimension and defect density, while the combustion temperature range is proportional to their polydispersity index. Mapping all these parameters allows one to evaluate the GnPs structure following a simple thermogravimetric experiment (without necessitating further statistical analysis). Finally, TG is also used to detect and quantify different GnP constituents in powder and to conduct rapid quality-control tests during GnP production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据