4.1 Article

Modeling the Viral Dynamics of Influenza A Virus Infection

期刊

CRITICAL REVIEWS IN IMMUNOLOGY
卷 30, 期 3, 页码 291-298

出版社

BEGELL HOUSE INC
DOI: 10.1615/CritRevImmunol.v30.i3.60

关键词

mathematical model; acute infection; antiviral therapy

资金

  1. James S. McDonnell Foundation
  2. DOE/LANL [20070099DR]

向作者/读者索取更多资源

Influenza virus causes an acute, mostly self-limited, infection of the upper respiratory tract. Yearly epidemics of influenza infect up to 20% of the population, and in the US cause an average of 36,000 deaths every year. Because influenza is a short-term infection lasting 4 to 7 d in most cases, studying the dynamics of the virus and the immune response in vivo is difficult. Here we review the most recent attempts at mathematical modeling of influenza dynamics within the host to better understand the kinetics of the virus and associated immune responses. These models have been developed based on very successful kinetic studies of chronic infections, such as human immunodeficiency and hepatitis C viruses. We briefly review the approach taken for these infections before discussing the results obtained in the case of influenza. The dynamics of the latter have been studied both in vitro and in vivo. It was shown that the virus turnover is very fast, which helps to explain the accumulation of diversity. Moreover, initial attempts have been made at modeling the immune response to influenza, but these are still incipient and further studies, both experimental and theoretical, are needed to better elucidate the interplay of the virus and the immune response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据