4.7 Article

Rapid adsorption of 2,4-dichlorophenoxyacetic acid by iron oxide nanoparticles-doped carboxylic ordered mesoporous carbon

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2014.12.074

关键词

Ordered mesoporous carbon; Iron oxide nanoparticles; 2,4-Dichlorophenoxyacetic acid; Adsorption

资金

  1. Young Top-Notch Talent Support Program of China
  2. National Natural Science Foundation of China [51222805]
  3. Program for New Century Excellent Talents in University from the Ministry of Education of China [NCET-11-0129]
  4. Interdisciplinary Research Project of Hunan University
  5. Fundamental Research Funds for the Central Universities
  6. Hunan University
  7. Foundation for the Author of Excellent Doctoral Dissertation of Hunan Province

向作者/读者索取更多资源

The ordered mesoporous carbon composite functionalized with carboxylate groups and iron oxide nanoparticles (Fe/OMC) was successfully prepared and used to adsorb 2,4-dichlorophenoxyacetic acid (2,4-D) from wastewater. The resultant adsorbent possessed high degree of order, large specific surface area and pore volume, and good magnetic properties. The increase in initial pollutant concentration and contact time would make the adsorption capacity increase, but the pH and temperature are inversely proportional to 2,4-D uptake. The equilibrium of adsorption was reached within 120 min, and the equilibrated adsorption capacity increased from 99.38 to 310.78 mg/g with the increase of initial concentration of 2,4-D from 100 to 500 mg/L. Notablely, the adsorption capacity reached 97% of the maximum within the first 5 min. The kinetics and isotherm study showed that the pseudo-second-order kinetic and Langmuir isotherm models could well fit the adsorption data. These results indicate that Fe/OMC has a good potential for the rapid adsorption of 2,4-D and prevention of its further diffusion. (C) 2014 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据