4.6 Article

Stimulation of the Brain With Radiofrequency Electromagnetic Field Pulses Affects Sleep-Dependent Performance Improvement

期刊

BRAIN STIMULATION
卷 6, 期 5, 页码 805-811

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.brs.2013.01.017

关键词

Memory consolidation; Synaptic plasticity; Sleep EEG; Mobile phones

资金

  1. Swiss Research Foundation on Mobile Communication [A2008-08]
  2. Swiss National Science Foundation [P00A-114923]

向作者/读者索取更多资源

Background: Sleep-dependent performance improvements seem to be closely related to sleep spindles (12-15 Hz) and sleep slow-wave activity (SWA, 0.75-4.5 Hz). Pulse-modulated radiofrequency electromagnetic fields (RF EMF, carrier frequency 900 MHz) are capable to modulate these electroencephalographic (EEG) characteristics of sleep. Objective: The aim of our study was to explore possible mechanisms how RF EMF affect cortical activity during sleep and to test whether such effects on cortical activity during sleep interact with sleep-dependent performance changes. Methods: Sixteen male subjects underwent 2 experimental nights, one of them with all-night 0.25 -0.8 Hz pulsed RF EMF exposure. All-night EEG was recorded. To investigate RF EMF induced changes in overnight performance improvement, subjects were trained for both nights on a motor task in the evening and the morning. Results: We obtained good sleep quality in all subjects under both conditions (mean sleep efficiency > 90%). After pulsed RF EMF we found increased SWA during exposure to pulse-modulated RF EMF compared to sham exposure (P < 0.05) toward the end of the sleep period. Spindle activity was not affected. Moreover, subjects showed an increased RF EMF burst-related response in the SWA range, indicated by an increase in event-related EEG spectral power and phase changes in the SWA range. Notably, during exposure, sleep-dependent performance improvement in the motor sequence task was reduced compared to the sham condition (-20.1%, P = 0.03). Conclusion: The changes in the time course of SWA during the exposure night may reflect an interaction of RF EMF with the renormalization of cortical excitability during sleep, with a negative impact on sleep-dependent performance improvement. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据