4.0 Review

The cerebellar network: From structure to function and dynamics

期刊

BRAIN RESEARCH REVIEWS
卷 66, 期 1-2, 页码 5-15

出版社

ELSEVIER
DOI: 10.1016/j.brainresrev.2010.10.002

关键词

-

向作者/读者索取更多资源

Since the discoveries of Camillo Golgi and Ramon y Cajal, the precise cellular organization of the cerebellum has inspired major computational theories, which have then influenced the scientific thought not only on the cerebellar function but also on the brain as a whole. However, six major issues revealing a discrepancy between morphologically inspired hypothesis and function have emerged. (1) The cerebellar granular layer does not simply operate a simple combinatorial decorrelation of the inputs but performs more complex non-linear spatio-temporal transformations and is endowed with synaptic plasticity. (2) Transmission along the ascending axon and parallel fibers does not lead to beam formation but rather to vertical columns of activation. (3) The olivo-cerebellar loop could perform complex timing operations rather than error detection and teaching. (4) Purkinje cell firing dynamics are much more complex than for a linear integrator and include pacemaking, burst-pause discharges, and bistable states in response to mossy and climbing fiber synaptic inputs. (5) Long-term synaptic plasticity is far more complex than traditional parallel fiber LTD and involves also other cerebellar synapses. (6) Oscillation and resonance could set up coherent cycles of activity designing a functional geometry that goes far beyond pre-wired anatomical circuits. These observations clearly show that structure is not sufficient to explain function and that a precise knowledge on dynamics is critical to understand how the cerebellar circuit operates. (C) 2010 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据