4.5 Review

Genetically engineered mouse models of Parkinson's disease

期刊

BRAIN RESEARCH BULLETIN
卷 88, 期 1, 页码 13-32

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.brainresbull.2011.07.019

关键词

Parkinson's disease; Mouse models; Alpha-synuclein; Autophagy-lysosomal pathway

资金

  1. UAB
  2. Michael J Fox Foundation
  3. VA merit award
  4. [NIHR01-NS064090]

向作者/读者索取更多资源

Parkinson's disease (PD) is the most common neurodegenerative movement disorder, affecting more than 1% of the population over age 60. The most common feature of PD is a resting tremor, though there are many systemic neurological effects, such as incontinence and sleep disorders. PD is histopathologically identified by the presence of Lewy bodies (LB), proteinaceous inclusions constituted primarily by alpha-synuclein. To date, there is no effective treatment to slow or stop disease progression. To help understand disease pathogenesis and identify potential therapeutic targets, many genetic mouse models have been developed. By far the most common of these models are the wildtype and mutant alpha-synuclein transgenic mice, because alpha-synuclein was the first protein shown to have a direct effect on PD pathogenesis and progression. There are many other gene-disrupted or -mutated models currently available, which are based on genetic anomalies identified in the human disease. In addition, there are also models which examine genes that may contribute to disease onset or progression but currently have no identified causative PD mutations. These genes are part of signaling pathways important for maintaining neuronal function in the nigrostriatal pathway. This review will summarize the most commonly used of the genetic mouse models currently available for PD research. We will examine how these models have expanded our understanding of PD pathogenesis and progression, as well as aided in identification of potential therapeutic targets in this disorder. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据