4.5 Article

Expression and phosphorylation of glutamate receptor subunits and CaMKII in a mouse model of Parkinsonism

期刊

BRAIN RESEARCH
卷 1549, 期 -, 页码 22-31

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2013.12.023

关键词

Weaver striatum; NMDA receptor; AMPA receptor; CaMKII; Protein phosphorylation; Parkinsonism

资金

  1. European Social Fund (ESF)
  2. Operational Program for Educational and Vocational Training II (EPEAEK II)
  3. Program PYTHA-GORAS II
  4. Polembros Shipping Limited

向作者/读者索取更多资源

Dopaminergic deficiency of the weaver mutant mouse is a valuable tool to further our understanding of Parkinson's disease (PD) pathogenesis since dopaminergic neurons of the nigrostriatal pathway undergo spontaneous and progressive cell death. In the present study we investigated the changes in protein expression and phosphorylation of glutamate receptor subunits and alpha CaMKII in weaver striatum at the end of the third and sixth postnatal month. Using immunoblotting, we found increased immunoreactivity levels of both GluN2A and GluN2B subunits of NMDA receptors and GluA1 subunit of AMPA receptors approximately from 75% to 110% in the 3-month-old weaver striatum compared to control. In the 6-month-old weaver striatum, no changes were detected in GluN2A and GluA1 immunoreactivity levels, whereas GluN2B showed a 21% statistically significant increase. Our results also indicated increased phospho-S1303 GluN2B in both 3 and 6 month-olds and increased phospho-S831 and -845 GluA1 in 3 month-old weaver striatum. However, these increases did not exceed the increases observed for total GluN2B and GluA1. Furthermore, our results showed increased immunoreactivity levels for phospho-T286 alpha CaMKII by approximately 180% in the 6 month-old weaver striatum, while total CaMKII immunoreactivity levels were not altered at either 3- or 6-month-old weaver. Our results suggest that distinct degrees of DA neuron degeneration differentially affect expression and phosphorylation of striatal glutamate receptors and alpha CaMKII. Findings on this genetic parkinsonian model suggest that striatal glutamatergic signaling may play an important role in synaptic plasticity and motor behavior that follow progressive and chronic dopamine depletion in PD with biochemical consequences beyond those seen in acute toxic models. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据