4.5 Article

Impaired antioxydative Keap1/Nrf2 system and the downstream stress protein responses in the motor neuron of ALS model mice

期刊

BRAIN RESEARCH
卷 1446, 期 -, 页码 109-118

出版社

ELSEVIER
DOI: 10.1016/j.brainres.2011.12.064

关键词

ALS; Keap1; Nrf2; Antioxidant protein

资金

  1. Ministry of Education, Science, Culture and Sports of Japan
  2. Research Committee of CNS Degenerative Diseases (Nakano I)
  3. Ministry of Health, Labour and Welfare of Japan
  4. [21390267]

向作者/读者索取更多资源

The Kelch-like ECH-associated protein 1 (Keap1)/Nuclear erythroid 2-related factor 2 (Nrf2) system is the major cellular defense mechanism under oxidative stress, but the role in motor neuron degeneration under amyotrophic lateral sclerosis (ALS) pathology has not yet been fully elucidated. Here we examined temporal and spatial changes of Keap1, Nrf2, and their downstream stress response proteins heme oxgenase-1 (HO-1), glutathione, thioredoxin (TRX), and heat shock protein 70 (HSP70) throughout the course of motor neuron (MN) degeneration in the spinal cord of ALS model mice. Keap1 protein levels progressively decreased in the MN and anterior lumbar cord of ALS mice to 63% at early symptomatic 14 weeks and 58% at end symptomatic 18 weeks, while Nrf2 dramatically increased in the anterior lumbar cord with accumulation in the MN nucleus to 229% at 14 weeks and 471% at 18 weeks when glial like cells became also positive. In contrast, downstream stress response proteins such as HO-1, glutathione, TRX, and HSP70 showed only a small increase in MN with a significant increase to 149% to 280% in the number of glial-like cells after symptomatic 14 weeks. Our present observation suggests that MN selectively lost inductions of these important downstream protective proteins without regard to the Keap1/Nrf2 system activation, which could be a pivotal mechanism of neurodegenerative processes of ALS. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据