4.7 Article

Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 10, 期 9, 页码 4133-4143

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-10-4133-2010

关键词

-

资金

  1. Academy of Finland [123466, 1118615]
  2. Natural Environment Research Council
  3. Maj and Tor Nessling Foundation [2009152]

向作者/读者索取更多资源

Modification of cloud albedo by controlled emission of sea spray particles into the atmosphere has been suggested as a possible geoengineering option to slow global warming. Previous global studies have imposed changes in cloud drop concentration in low level clouds to explore the radiative and climatic effects. Here, we use a global aerosol transport model to quantify how an imposed flux of sea spray particles affects the natural aerosol processes, the particle size distribution, and concentrations of cloud drops. We assume that the proposed fleet of vessels emits sea spray particles with a wind speed-dependent flux into four regions of persistent stratocumulus cloud off the western coasts of continents. The model results show that fractional changes in cloud drop number concentration (CDNC) vary substantially between the four regions because of differences in wind speed (which affects the spray efficiency of the vessels), transport and particle deposition rates, and because of variations in aerosols from natural and anthropogenic sources. Using spray emission rates comparable to those implied by previous studies we find that the predicted CDNC changes are very small (maximum 20%) and in one of the four regions even negative. The weak or negative effect is because the added particles suppress the in-cloud supersaturation and prevent existing aerosol particles from forming cloud drops. A scenario with five times higher emissions (considerably higher than previously assumed) increases CDNC on average by 45-163%, but median concentrations are still below the 375 cm(-3) assumed in previous studies. An inadvertent effect of the spray emissions is that sulphur dioxide concentrations are suppressed by 1-2% in the seeded regions and sulphuric acid vapour by 64-68% due to chemical reactions on the additional salt particles. The impact of this suppression on existing aerosol is negligible in the model, but should be investigated further in the real environment so that inadvertent impacts can be excluded.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据