4.5 Article

2-Methylbutyrylglycine induces lipid oxidative damage and decreases the antioxidant defenses in rat brain

期刊

BRAIN RESEARCH
卷 1478, 期 -, 页码 74-82

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2012.08.039

关键词

2-methylbutyrylglycine; 2-methylbutyric acid; Oxidative stress; Cerebral cortex; C6 glioma cell

资金

  1. CNPq
  2. PRONEX II
  3. FAPERGS
  4. PROPESQ/UFRGS
  5. FINEP research grant Rede Instituto Brasileiro de Neurociencias (IBN-Net) [01.06.0842-00]
  6. INCT-EN

向作者/读者索取更多资源

Short/branched chain acyl-CoA dehydrogenase (SBCAD) deficiency is an autosomal recessive disorder of isoleucine metabolism biochemically characterized by accumulation of 2-methylbutyrylglycine (2MBG) and 2-methylbutyric acid (2MB). Affected patients present predominantly neurological symptoms, whose pathophysiology is not yet established. In the present study, we investigated the in vitro effects of 2MBG and 2MB on important parameters of oxidative stress in cerebral cortex of young rats and C6 glioma cells. 2MBG increased thiobarbituric acid-reactive species (TBA-RS), indicating an increase of lipid oxidation. 2MBG induced sulfhydryl oxidation in cortical supernatants and decreased glutathione (GSH) in these brain preparations, as well as in C6 cells, indicating a reduction of nonenzymatic brain antioxidant defenses. In contrast, 2MB did not alter any of these parameters and 2MBG and 2MB did not affect carbonyl formation (protein damage). In addition, 2MBG-induced increase of TBA-RS levels and decrease of GSH were prevented by free radical scavengers, implying that reactive species were involved in these effects. Furthermore, the decrease of GSH levels caused by 2MBG was not due to a direct oxidative action since this metabolite did not alter sulfhydryl content from a commercial solution of GSH. Nitric oxide production was not altered by 2MBG and 2MB, suggesting that reactive oxygen species possibly underlie 2MBG effects. Finally, we verified that 2MBG did not induce cell death in C6 cells. The present data show that 2MBG induces lipid oxidative damage and reduces the antioxidant defenses in rat brain. Therefore, it may be postulated that oxidative stress induced by 2MBG is involved, at least in part, in the pathophysiology of the brain damage found in SBCAD deficiency. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据