4.7 Article

Incorporation of polymerizable surfactants in hydroxyethyl methacrylate lenses for improving wettability and lubricity

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 445, 期 -, 页码 60-68

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2014.12.061

关键词

Wettability; Lubricity; Contact lenses; Friction; Contact angle; Polymerizable surfactants; P-HEMA

向作者/读者索取更多资源

Dryness and discomfort are the main reasons for dropouts in contact lens wearers. Incorporating surfactants in lens formulations could improve wettability and lubricity, which can improve comfort. We have focused on incorporating polymerizable surfactants in hydroxyethyl methacrylate lenses to improve comfort, while minimizing the potential for surfactant release into the tears. The surfactants were added to the polymerization mixture, followed by UV curing and extraction of leachables in hot water. Wettability and lubricity were characterized by measuring the contact angle and coefficient of friction. Lenses were also characterized by measuring transmittance, loss and storage moduli and ion permeability. Incorporation of surfactants significantly reduced contact angle from 900 for p-HEMA gels to about 100 for 2.43% (w/w) surfactant loading in hydrated gel. The coefficient of friction also decreased from about 0.16 for HEMA gels to 0.05 for the gels with 2.43% surfactant loading. There was a good correlation between the contact angle and coefficient of friction suggesting that both effects can be related to the stretching of the surfactant tails near the surface into the aqueous phase. The water content was also correlated with the surfactant loading but the contact angle was more sensitive suggesting that the observed improvements in wettability and lubricity arise from the protrusion of the surfactant tails in into the liquid, and not purely from the increase in the water content. The gels were clear and certain compositions also have the capability to block UVC and UVB radiation. The results suggest that incorporation of polymerizable surfactants could be useful in improving surface properties without significantly impacting any bulk property. (C) 2014 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据