4.5 Article

Modulation of dendritic spines and synaptic function by Rac1: A possible link to Fragile X syndrome pathology

期刊

BRAIN RESEARCH
卷 1399, 期 -, 页码 79-95

出版社

ELSEVIER
DOI: 10.1016/j.brainres.2011.05.020

关键词

Rac1; Fragile X syndrome; Plasticity; LTP

资金

  1. FRAXA Research Foundation
  2. Jerome LeJeune Foundation
  3. National Institutes of Health [NS48037]

向作者/读者索取更多资源

Rac1, a protein of the Rho GTPase subfamily, has been implicated in neuronal and spine development as well as the formation of synapses with appropriate partners. Dendrite and spine abnormalities have been implicated in several psychiatric disorders such as Fragile X syndrome, where neurons show a high density of long, thin, and immature dendritic spines. Although abnormalities in dendrites and spines have been correlated with impaired cognitive abilities in mental retardation, the causes of these malformations are not yet well understood. Fragile X syndrome is the most common type of inherited mental retardation caused by the absence of FMRP protein, a RNA-binding protein implicated in the regulation of mRNA translation and transport, leading to protein synthesis. We suggest that FMRP might act as a negative regulator on the synthesis of Rac1. Maintaining an optimal level of Rac1 and facilitating the reorganization of the cytoskeleton likely leads to normal neuronal morphology during activity-dependent plasticity. In our study, we first demonstrated that Rac1 is not only associated but necessary for normal spine development and long-term synaptic plasticity. We further showed that, in Fmr1 knockout mice, lack of FMRP induces an overactivation of Rac1 in the mouse brain and other organs that have been shown to be altered in Fragile X syndrome. In those animals, pharmacological manipulation of Rac1 partially reverses their altered long-term plasticity. Thus, regulation of Rac1 may provide a functional link among deficient neuronal morphology, aberrant synaptic plasticity and cognition impairment in Fragile X syndrome. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据