4.7 Article

Multifunctionalization of wool fabrics through nanoparticles: A chemical route towards smart textiles

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 456, 期 -, 页码 85-92

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2015.06.018

关键词

Wool; Nanoparticles; Titania; Silica; Silver; Nanotextiles

资金

  1. Regione autonoma della Sardegna of the master back program [Legge 7]

向作者/读者索取更多资源

A new approach towards the design of smart nanotextiles with innovative properties is presented. Silica (SiO2), titania (TiO2), and silver (Ag) nanoparticles (NPs), were synthesized without the use of any toxic organic compound and then were used, alone and in combination, to functionalize wool fabrics. Electrostatic forces, influenced by a low pH of the solutions, allowed the interactions between wool fabrics and NPs, enabling a robust functionalization. This was verified by X-ray microfluorescence and visualized by scanning electron microscopy measurements. The antibacterial Ag NPs were embedded in a polymer, alginic acid, to reduce the possible side effect due to their direct contact with the skin. SiO2 NPs, instead, were used to change the hydrophilicity of wool while the functionalization with TiO2 NPs was chosen to provide self-cleaning properties. The antibacterial activity of the fabrics was studied against the bacteria Escherichia coli, while the hydrophilicity of wool was studied by contact angle measurements and the self-cleaning properties were tested by estimating the visible discoloring of a dye stain under sunlight irradiation. Interestingly the combination of three different types of NPs provided the best results. SiO2 and Ag made the wool superhydrophilic providing at the same time the best antibacterial properties, while fabrics with titania (alone or in combination) were hydrophobic and showed the best self-cleaning properties. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据