4.5 Article

Regional cerebral glucose uptake in the 3xTG model of Alzheimer's disease highlights common regional vulnerability across AD mouse models

期刊

BRAIN RESEARCH
卷 1347, 期 -, 页码 179-185

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2010.05.084

关键词

Alzheimer's disease; Animal models; Functional brain imaging; Transgenic mice; Glucose uptake; Energy metabolism

资金

  1. Barrow Neurological Foundation
  2. Arizona Alzheimer's Consortium
  3. State of Arizona, Howard Hughes Medical Institute
  4. Arizona Alzheimer's Disease Clinical Core [P30 AG019610]

向作者/读者索取更多资源

We have previously used fluorodeoxyglucose (FDG) autoradiography to detect the pattern of metabolic declines in two different transgenic mouse models of fibrillar beta-amyloid pathology in Alzheimer's disease (AD), including the PDAPP mouse, which overexpresses a mutant form of human APP, and the PSAPP mouse, which overexpresses mutant forms of the human APP and PS1 genes. In this study, we used the same approach to study a triple-transgenic (3xTG) model of AD, which overexpresses human APP, PS1 and tau mutations, and progressively develops amyloid plaques, neurofibrillary tangles, and synaptic dysfunction. Densitometric measurements from 55 brain regions were characterized and compared in 2, 12, and 18 month-old 3xTG and wildtype control mice (n=12/group). By 18 months of age, the 3xTG mice had significant reductions in FDG uptake in every measured brain region, including cortical and subcortical gray matter, cerebellar and brainstem regions. However, regional differences in normalized FDG uptake were apparent in the 2- and 12-month-old 3xTG mice, in a brain network pattern reminiscent of our previous analyses in the other mouse models. This prominently included the posterior cingulate/retrosplenial cortex, as in each previously-analyzed model. Overall, our analyses highlight consistencies in brain glucose uptake abnormalities across multiple mouse models of amyloid-associated pathophysiology. These mouse brain regional changes are homologous to alterations seen in PET scans from human AD patients and could thus be useful biomarkers for early testing of novel interventions. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据