4.5 Review

Corticosteroid effects on cellular physiology of limbic cells

期刊

BRAIN RESEARCH
卷 1293, 期 -, 页码 91-100

出版社

ELSEVIER
DOI: 10.1016/j.brainres.2009.03.036

关键词

Corticosterone; Noradrenaline; Hippocampus; Basolateral amygdala; Nongenomic

资金

  1. ZonMW [912-04-042]
  2. HFSP [RGP0039/2006]
  3. NWO [903-47-076, 817-02-017]

向作者/读者索取更多资源

After stress, circulating levels of stress hormones such as corticosterone are markedly increased. This will have an impact on the neurophysiology of limbic neurons that highly express corticosteroid receptors. Over the past decades several principles about the neurophysiological impact of corticosterone have emerged. First, corticosterone can quickly raise the excitability of hippocampal CA1 neurons shortly after stress exposure, via a nongenomic pathway involving mineralocorticoid receptors presumably located in the pre- as well as postsynaptic membrane. At the same time, gene-mediated actions via the glucocorticoid receptor are started which some hours later will result in enhanced calcium influx and impaired ability to induce long-term potentiation. These delayed actions are interpreted as a means to slowly normalize hippocampal activity and preserve information encoded early on after stress. Second, the full spectrum of neurophysiological actions by corticosterone is accomplished in interaction with other stress mediators, like noradrenaline. Third, these effects in the CA1 hippocampal. region cannot be generalized to other brain regions such as the basolateral amygdala or paraventricular nucleus: There seems to be a highly differentiated response, which could serve to facilitate neuroendocrine/cognitive processing of some aspects of stress-related information, but attenuate other aspects. Finally, the time- and region-specific corticosteroid actions strongly depend on the individual's life history. (C) 2009 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据