4.5 Article

MMP-9 gene silencing by a quantum dot-siRNA nanoplex delivery to maintain the integrity of the blood brain barrier

期刊

BRAIN RESEARCH
卷 1282, 期 -, 页码 142-155

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2009.05.047

关键词

Nanotechnology; siRNA; Nanoplex; Blood brain barrier; Matrix metalloproteinases; MMP-9; Quantum dot; CNS

资金

  1. National Institute of Health [R01CA119397, R01CA104492]
  2. Kaleida Health Foundation
  3. John R. Oishei Foundation

向作者/读者索取更多资源

The matrix-degrading metalloproteinases (MMPs), particularly MMP-9, are involved in the neuroinflammation processes leading to disrupting of the blood brain barrier (BBB), thereby exacerbating neurological diseases such as HIV-1 AIDS dementia and cerebral ischemia. Nanoparticles have been proposed to act as non-viral gene delivery vectors and have great potential for therapeutic applications in several disease states. In this study, we evaluated the specificity and efficiency of quantum dot (QD) complexed with MMP-9-siRNA (nanoplex) in downregulating the expression of MMP-9 gene in brain microvascular endothelial cells (BMVEC) that constitute the BBB. We hypothesize that silencing MMP-9 gene expression in BMVECs and other cells such as leukocytes may help prevent breakdown of the BBB and inhibit subsequent invasion of the central nervous system (CNS) by infected and inflammatory cells. Our results show that silencing of MMP-9 gene expression resulted in the up-regulation of extracellular matrix (ECM) proteins like collagen I, IV, V and a decrease in endothelial permeability, as reflected by reduction of transendothelial resistance across the BBB in a well validated in-vitro BBB model. MMP-9 gene silencing also resulted in an increase in expression of the gene tissue inhibitor of metalloproteinase-1 (TIMP-1). This indicates the importance of a balance between the levels of MMP-9 and its natural inhibitor TIMP-1 in maintaining the basement membrane integrity. These studies promise the application of a novel nanoparticle based siRNA delivery system in modulating the MMP-9 activity in BMVECs and other MMP-9 producing cells. This will prevent neuroinflammation and maintain the integrity of the BBB. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据