4.5 Article

Heat shock-triggered Ca2+ mobilization accompanied by pectin methylesterase activity and cytosolic Ca2+ oscillation are crucial for plant thermotolerance

期刊

PLANT SIGNALING & BEHAVIOR
卷 5, 期 10, 页码 1252-1256

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/psb.5.10.12607

关键词

Ca2+; cell wall; EGTA; HSP; HSR; pectin methylesterase; thermotolerance

向作者/读者索取更多资源

A poplastic Ca2+ concentration controls membrane permeability, cell wall stabilization and cell integrity; however, little is known about its role in thermotolerance in plants. Here, we report that the acquired thermotolerance of etiolated rice seedlings (Oryza sativa) was abolished by an exogenously supplied Ca2+ chelator, EGTA, related to increased cellular content leakage during heat shock (HS) treatment. Thermotolerance was restored by the addition of Ca2+ during EGTA incubation. Pectin methylesterase (EC 3.1.1.11), a cell-wall remodeling enzyme, was activated in response to HS and its elevated activity was related to the recovery of the HS-released Ca2+ concentration. EGTA interfered with the capability of HS to increase oscillation of [Ca2+] cyt content. We assume that heat-activated PME activity is involved in cell-wall localized Ca2+. The removal of apoplastic Ca2+ might participate in HS signaling to induce HS protein expression and cell-wall remodeling to retain plasma membrane integrity, prevent cellular content leakage and confer thermoprotection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据