4.7 Article

Stable carbon isotope discrimination and microbiology of methane formation in tropical anoxic lake sediments

期刊

BIOGEOSCIENCES
卷 8, 期 3, 页码 795-814

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/bg-8-795-2011

关键词

-

资金

  1. Fonds der Chemischen Industrie
  2. Brazilian Research Council (CNPq)

向作者/读者索取更多资源

Methane is an important end product of degradation of organic matter in anoxic lake sediments. Methane is mainly produced by either reduction of CO2 or cleavage of acetate involving different methanogenic archaea. The contribution of the different methanogenic paths and of the diverse bacteria and archaea involved in CH4 production exhibits a large variability that is not well understood. Lakes in tropical areas, e. g. in Brazil, are wetlands with high potential impact on the global CH4 budget. However, they have hardly been studied with respect to methanogenesis. Therefore, we used samples from 16 different lake sediments in the Pantanal and Amazon region of Brazil to measure production of CH4, CO2, analyze the content of C-13 in the products and in intermediately formed acetate, determine the abundance of bacterial and archaeal microorgansisms and their community composition and diversity by targeting the genes of bacterial and archaeal ribosomal RNA and of methyl coenzyme M reductase, the key enzyme of methanogenic archaea. These experiments were done in the presence and absence of methyl fluoride, an inhibitor of acetoclastic methanogenesis. While production rates of CH4 and CO2 were correlated to the content of organic matter and the abundance of archaea in the sediment, values of C-13 in acetate, CO2, and CH4 were related to the C-13 content of organic matter and to the path of CH4 production with its intrinsic carbon isotope fractionation. Isotope fractionation was small (average 10 parts per thousand) for conversion of C-org to acetate-methyl, which was hardly further fractionated during CH4 production. However, fractionation was strong for CO2 conversion to CH4 (average 75 parts per thousand), which generally accounted for > 50% of total CH4 production. Canonical correspondence analysis did not reveal an effect of microbial community composition, despite the fact that it exhibited a pronounced variability among the different sediments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据