4.7 Article

Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers

期刊

BIOGEOSCIENCES
卷 8, 期 8, 页码 2089-2098

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/bg-8-2089-2011

关键词

-

资金

  1. Ministry of the Environment, Japan [A-0804]
  2. Grants-in-Aid for Scientific Research [22224009, 21340166, 22540483] Funding Source: KAKEN

向作者/读者索取更多资源

Ocean acidification (decreases in carbonate ion concentration and pH) in response to rising atmospheric pCO(2) is generally expected to reduce rates of calcification by reef calcifying organisms, with potentially severe implications for coral reef ecosystems. Large, algal symbiont-bearing benthic foraminifers, which are important primary and carbonate producers in coral reefs, produce high-Mg calcite shells, whose solubility can exceed that of aragonite produced by corals, making them the first responder in coral reefs to the decreasing carbonate saturation state of seawater. Here we report results of culture experiments performed to assess the effects of ongoing ocean acidification on the calcification of symbiont-bearing reef foraminifers using a high-precision pCO(2) control system. Living clone individuals of three foraminiferal species (Baculogypsina sphaerulata, Calcarina gaudichaudii, and Amphisorus hemprichii) were subjected to seawater at five pCO(2) levels from 260 to 970 mu atm. Cultured individuals were maintained for about 12 weeks in an indoor flow-through system under constant water temperature, light intensity, and photoperiod. After the experiments, the shell diameter and weight of each cultured specimen were measured. Net calcification of B. sphaerulata and C. gaudichaudii, which secrete a hyaline shell and host diatom symbionts, increased under intermediate levels of pCO(2) (580 and/or 770 mu atm) and decreased at a higher pCO(2) level (970 mu atm). Net calcification of A. hemprichii, which secretes a porcelaneous shell and hosts dinoflagellate symbionts, tended to decrease at elevated pCO(2). Observed different responses between hyaline and porcelaneous species are possibly caused by the relative importance of elevated pCO(2), which induces CO2 fertilization effects by algal symbionts, versus associated changes in seawater carbonate chemistry, which decreases a carbonate concentration. Our findings suggest that ongoing ocean acidification might favor symbiont-bearing reef foraminifers with hyaline shells at intermediate pCO(2) levels (580 to 770 mu atm) but be unfavorable to those with either hyaline or porcelaneous shells at higher pCO(2) levels (near 1000 mu atm).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据