4.7 Article

The hubs of the human connectome are generally implicated in the anatomy of brain disorders

期刊

BRAIN
卷 137, 期 -, 页码 2382-2395

出版社

OXFORD UNIV PRESS
DOI: 10.1093/brain/awu132

关键词

topology; VBM; graph analysis; rich club; tractography

资金

  1. Wellcome Trust
  2. Medical Research Council (UK)
  3. NIH/NIMH [R01 MH074457]
  4. Medical Research Council [G0001354, G0001354B, G1000183B] Funding Source: researchfish
  5. National Institute for Health Research [NF-SI-0513-10051] Funding Source: researchfish

向作者/读者索取更多资源

Brain networks contain a minority of highly connected hub nodes with high topological value and biological cost. Using network analysis of DTI data from healthy volunteers, and meta-analyses of published MRI studies in 26 brain disorders, Crossley et al. show that lesions across disorders tend to be concentrated at hubs.Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly. Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical networks estimated from diffusion tensor imaging data on healthy volunteers (n = 56), and showed that computational attacks targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26 different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be located in hubs of the normal brain connectome (P < 10(-4), permutation test). Specifically, nine brain disorders had lesions that were significantly more likely to be located in hubs (P < 0.05, permutation test), including schizophrenia and Alzheimer's disease. Both these disorders had significantly hub-concentrated lesion distributions, although (almost completely) distinct subsets of cortical hubs were lesioned in each disorder: temporal lobe hubs specifically were associated with higher lesion probability in Alzheimer's disease, whereas in schizophrenia lesions were concentrated in both frontal and temporal cortical hubs. These results linking pathological lesions to the topological centrality of nodes in the normal diffusion tensor imaging connectome were generally replicated when hubs were defined instead by the meta-analysis of more than 1500 task-related functional neuroimaging studies of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据