4.7 Article

Secondary and primary dystonia: pathophysiological differences

期刊

BRAIN
卷 136, 期 -, 页码 2038-2049

出版社

OXFORD UNIV PRESS
DOI: 10.1093/brain/awt150

关键词

transcranial magnetic stimulation; brain plasticity; dystonia; cerebellum; sensorimotor cortex

资金

  1. Department of Health's National Institute for Health Research Biomedical Research Centres funding scheme
  2. National Institute for Health Research Clinician Scientist Fellowship

向作者/读者索取更多资源

Primary dystonia is thought to be a disorder of the basal ganglia because the symptoms resemble those of patients who have anatomical lesions in the same regions of the brain (secondary dystonia). However, these two groups of patients respond differently to therapy suggesting differences in pathophysiological mechanisms. Pathophysiological deficits in primary dystonia are well characterized and include reduced inhibition at many levels of the motor system and increased plasticity, while emerging evidence suggests additional cerebellar deficits. We compared electrophysiological features of primary and secondary dystonia, using transcranial magnetic stimulation of motor cortex and eye blink classical conditioning paradigm, to test whether dystonia symptoms share the same underlying mechanism. Eleven patients with hemidystonia caused by basal ganglia or thalamic lesions were tested over both hemispheres, corresponding to affected and non-affected side and compared with 10 patients with primary segmental dystonia with arm involvement and 10 healthy participants of similar age. We measured resting motor threshold, active motor threshold, input/output curve, short interval intracortical inhibition and cortical silent period. Plasticity was probed using an excitatory paired associative stimulation protocol. In secondary dystonia cerebellar-dependent conditioning was measured using delayed eye blink classical conditioning paradigm and results were compared with the data of patients with primary dystonia obtained previously. We found no difference in motor thresholds, input/output curves or cortical silent period between patients with secondary and primary dystonia or healthy controls. In secondary dystonia short interval intracortical inhibition was reduced on the affected side, whereas it was normal on the non-affected side. Patients with secondary dystonia had a normal response to the plasticity protocol on both the affected and non-affected side and normal eye blink classical conditioning that was not different from healthy participants. In contrast, patients with primary dystonia showed increased cortical plasticity and reduced eye blink classical conditioning. Normal motor cortex plasticity in secondary dystonia demonstrates that abnormally enhanced cortical plasticity is not required for clinical expression of dystonia, and normal eye blink conditioning suggests an absence of functional cerebellar involvement in this form of dystonia. Reduced short interval intracortical inhibition on the side of the lesion may result from abnormal basal ganglia output or may be a consequence of maintaining an abnormal dystonic posture. Dystonia appears to be a motor symptom that can reflect different pathophysiological states triggered by a variety of insults.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据